
Ira Baxter Ph.D.

CTO, Semantic Designs Inc.

So much code…

Approaches for

 Code Modernization

Speaker Biography: Ira Baxter

Hardcore Software Engineering Experience over 50 years

• 0th epoch: Dabbling with IBM computers in 1967: 1401, 1620, 360/40
– Fortran, PL/1, assembler

– Digital hardware design

• 1st epoch : 1969: Assembler and OS
– Built my 1st Timesharing System in hardcore assembler in 1970 on 16 bit mini

– Built/programmed 16 bit RISC minicomputer in 1973 to run 3-axis milling machines

– Built my 2nd OS in 1975 on 8 bit micros: standalone, timeshare, distributed

• 2nd epoch : 1980: Research in foundations of automated software engineering
– What did those operating systems have in common?

• NOT THE ASSEMBLY CODE: ABSTRACTIONS AND DESIGN DECISIONS

– Develop techniques to automate code transformation to find/instantiate abstractions

• 3rd epoch : 1991: Automated generation of scientific codes for super computers

• 4th epoch : 1994: R&D on software automation for factory/industrial control software

• 5th epoch : 1996: Founded Semantic Designs / Built DMS®

– Commercial, automated software modernization services

– Many projects essentially impossible to do manually

(still coding (x86) assembler support parallel symbolic computation)

 Semantic Designs

 Mission: Develop software tools to automate large-scale software analysis and change

 Started in 1996 with $2M NIST grant for Design Maintenance System® (DMS®) concept

 Apply to software systems that exceed the capabilities of commercial COTS and vendors
because of scale, complexity, and customer-specific needs.

Legacy == Successful

often mission critical

… but …
• Code is in legacy language and/or has legacy architecture
• Data is in format that is hard to share with other systems
• Functionality is difficult to integrate with other systems
• Support costs are high
• I can’t hire new resources with legacy technology skills

 Response to requests for changes from clients is too long

Legacy == Successful

… but …
• Code is in legacy language and/or has legacy architecture
• Data is in format that is hard to share with other systems
• Functionality is difficult to integrate with other systems
• Performance is limited by legacy hardware/application structure
• Legacy engineers are retiring at accelerating rates
• Can’t hire new resources with legacy technology skills
• Support costs are high

 Response to requests for changes from clients takes too long

Legacy == Successful

How to
change
this?

 Two Basic Approaches to improving Productivity on Legacy Systems

1. Improve engineering activities

 Better processes
 Improve specification capture to avoid implementing wrong thing

 Improve implementation: better tools to avoid mistakes

 Improve testing: regularize process, provide quality analysis/test generation/ tracking tools

 Educate the engineers
 Better software engineering skills: hire or train

 Better understanding of software structure: document architecture

 Tools to extract useful facts from code to avoid manual discovery

 Improve project time/cost estimations

 Recode problematic modules

 Two Basic Approaches to improving productivity on Legacy Systems

2. Modernize the code: revise at scale the parts that create difficulty

 Move off legacy hardware/OS where feasible

 Code in higher level languages
 Less code/clearer structure improves engineer understanding

 Better feedback from compilers and static analysis tools

 Better test support

 Less testing effort

 Better application architectures
 More coherent subsystems

 Less tangled code minimizes accidental interactions

 Easier to explain to engineers

 Can help minimize system failures

 Better data architecture/access makes data available in broader scope

Today’s
focus

Modernization Strategies

Can be migrated “as-is”,
minimal technology change

Retain language, move platform

Convert to more modern
language and database

Automatically convert to
maintainable Java/C#/C/C++

Modify application
architecture and structure

Improve quality by modifying
code within legacy technology

Replace with COTS package

SAP, Oracle ERP, others

Retire if app is no longer
required

Rehost

Convert

ReFactor

Replace

Retire

Modernization Strategies

Test/
Deploy

Mainframe

Cloud

Distributed

Mobile

Can be migrated “as-is”,
minimal technology change

Retain language, move platform

Convert to more modern
language and database

Automatically convert to
maintainable Java or C#

Modify application
architecture and structure

Improve quality by modifying
code within legacy technology

Replace with COTS package

SAP, Oracle ERP, others

Retire if app is no longer
required

Rehost

Convert

ReFactor

Replace

Retire

Modernization Strategies

Rehost

Determine Strategy

Can be migrated “as-is”,
minimal technology change

Retain language, move
platform

Convert to more modern
language and database

Automatically convert to
maintainable Java or C#

Modify application
architecture and structure

Replace with COTS
package

Improve quality by
modifying code within
legacy technology

Retire if app is no longer
required

SAP, Oracle ERP, others
Replace

X

Retire

Convert

ReFactor

Discovery Assessment
Test/

Deploy

Mainframe

Cloud

Distributed

Mobile

12

A program is a set
of technologies

glued together by
programming

language constructs

Le
ga

cy
 P

ro
gr

am
s

Legacy
Ecosystem

Accurate Understanding of Legacy Migration Scope

Data
Access

Source
Language

Interactive
Screens

Security

External
Interfaces

Scheduler

13

A migration requires mapping legacy technologies to new technologies

External

Interfaces

Source

Language

Database

Access

Interactive

Screens

Scheduling

Security

Le
ga

cy
 P

ro
gr

am
 T

ec
h

n
o

lo
g

ie
s

New
External

Interfaces

New
Interactive

Screens

Replicate
Green
Screen

N
ew

 Tech
n

o
lo

gy d
u

 jo
u

r C
h

o
ices

Specific Technology Choices

External

Interfaces

Source

Language

Database

Access

Interactive

Screens

Scheduling

Security

External

Interfaces

Source
Language

Interactive

Screens

Scheduling

Security

Database
Access

May need more than 1 option

14

External

Interfaces

Source

Language

Database

Access

Interactive

Screens

Scheduling

Security

Le
ga

cy
 P

ro
gr

am
 T

ec
h

n
o

lo
g

ie
s

External

Interfaces

Source

Language

Database

Access

Interactive

Screens

Scheduling

Security

External

Interfaces

Source

Language

Database

Access

Interactive

Screens

Scheduling

Security

External

Interfaces

Source

Language

Database

Access

Interactive

Screens

Scheduling

Security

External

Interfaces

Source

Language

Database

Access

Interactive

Screens

Scheduling

Security

New
External

Interfaces

New
Source

Language

New
Database

Access

New
Interactive

Screens

New
Scheduling

New
Security

N
ew

 Tech
n

o
lo

gy d
u

 jo
u

r C
h

o
ices

External

Interfaces

Source

Language

Database

Access

Interactive

Screens

Scheduling

Security

External

Interfaces

Source
Language

Interactive

Screens

Scheduling

Security

Database
Access

Precise Strategy for each Technology Mapping

Other Considerations e.g. Code Refactoring and Optimization

Technology and Architecture Considerations
 Legacy language features where the corresponding equivalent is not readily apparent

 API conversions

 Database access issues

 Target Architecture requirements

Maintainability
 Source code format and style guidelines

 Removal of unnecessary requirements of the legacy environment

 Quality optimizations: goto removal, dead code, breaking apart monolithic structures…

 Application Performance
 Translator may choose more efficient code structures (e.g, Java LONG vs PACKED)

 Modern compiler may generate more efficient code (much better code optimizers)

Comparison

Migration Approaches

Manual ReWrite

Point Solution Translators

Configurable Translation

The Details Matter - Huge investment in getting the legacy application right over a long period of time

 Well known Software Development Process with skilled resources

 It will take longer than you think

 Tug of war with legacy system enhancements during migration

 Integration and coordination nightmare

 Many different coders means uneven code style/quality

 Humans make mistakes - Can you afford the Risk?

Lessons Learned – Manual Migrations

17 Emerson Confidential

So much code…

Lessons Learned – Semi-Automated Migrations

Migration Tool translated some of the code, but…

 Tremendous jump start – 50%+ translation out of the box

 Translation is incomplete - leaves hard part to do by hand

 Translation is incorrect – debugging is difficult

 Code is poor and uneven quality

Lessons Learned for Highly-Automated Migrations

Migration tool translate 99+% of the code

1. Translation is complete

2. Translation is correct

3. Code is consistently high quality

4. Cost 1/10 of manual migration at scale $.50 - $3.00 per LOC

DM

S
Grammar

Rules

Parse Analyze

Rule

Compiler
Transform Format

Target Language

Formatting Rules

Program

Understanding

Rules

Rewrite Rules

DMS

Grammar

Rules

Parse Analyze

Rule

Compiler
Transform Format

Target Language

Formatting Rules

Program Understanding Rules

Rewrite Rules

Case Studies

Case Study: B2 Bomber Mission Software

Change: 100% Automated Migration Jovial to C

Business Challenge: Existing B-2 Mission software incapable of meeting new requirements from the military

• Legacy JOVIAL software needed to be modernized

• Internal teams unable to re-write application

Technical Problem: Legacy Software Complexity

• Client tried twice and failed before turning to Semantic Designs

• 1.2 million lines Black code; SD not allowed to see source

Solution: Migrated 100% by DMS

• Define JOVIAL language from scratch to DMS

• Reuse existing definition for C target language

• ~6000 translation rules

• Delivered in 9 months

•Benefit: Trustworthy solution for critical software

Jovial to C conversion

Operational in US Strategic B2 Bomber fleet

Case Study: Flight Reservations Migration Airlines

Change: Convert legacy programing language to C

Business Challenge: Programmers creating new system defects when making application changes

• Old technology with unmaintained compiler on TPF

• Aging workforce unable to hire resources with SabreTalk skills

• Speed to market for system modifications

Technical Problem: Scale makes manual conversion to risky

• 5+ Million lines of SabreTalk plus Assembler Macros

• 14,000 software components

Solution: 90 Day Proof of Concept Migration

• 11 key modules 100% automatically translated by DMS Toolkit

• Validated by Customer - Transitioning into production

• Demo conversion of remaining modules at 95% automated conversion

Benefit: Lower Cost and Risk for Migration

They also want help:

• Understanding programs

• Testing migration

• Testing modified code

OPTIONS=TRACE

 FINDCUST: PROC;

 /* TINY SABRETALK PROGRAM */

 %INCLUDE EB0EB,SW00SR,INVDB,INVCES;

 DCL FOUND BIT(32);

 DCL CUSTNAME CHAR(64) BASED(CUSTPTR);

 DCL BUFFER CHAR(100) BASED(BUFPTR);

 DCL INVPTR BIT(32);

 DCL DEADVAR BIT(32);

 DCL SUB BIN(15) DEF EBW096;

 /**************************/

 START (CUSTPTR=#RG1);

 INVDBPTR = INVDBCR2;

 BSTR(BUFFER,1,1) = 0;

 CSTR(BUFFER,2,99) = CSTR(BUFFER,1,99);

 BSTR(EBSW01) = '00'X;

 INVPTR = INVDBA90(SUB);

 FNDEAD: FOUND=0;

 IF INVPTR = 0

 THEN GOTO FNDC45;

 GOTO FNDOPEN;

 FNDREAD: DBRED 'REF=INVCES','REG=R1',

 KEY1=(PKY=#INVCESK),

 UP,BEGIN,ERRORA=FNDC45

 (#RG1=INVPTR,#RG3=SW0PTR,

 SW0PTR=#RG3,INVPTR=#RG1);

 IF SW00RTN > 0

 THEN GOTO FNDC45;

 CALL SETFOUND;

 FNDC45: DBCLS 'REF=INVCES',RELFC

 (SW0PTR=#RG3);

 EXIT:

 BACKC(#RG1=BUFPTR);

 FNDOPEN: DBOPN 'REF=INVCES','REG=R1',

 FADDR=?INVPTR,HOLD

 (SW0PTR=#RG3);

 GOTO FNDREAD;

 SETFOUND: PROC;

 FOUND = 1;

 END SETFOUND;

 DEADPROC: PROC;

 FOUND = 0;

 END DEADPROC;

 END FINDCUST;

Some C translator features:
• Main program
• Subroutines
• Header files
• GOTOs removed
• Dead code/labels/data removed
• Optimized clears/assignments
• … many more

/* OPTIONS=TRACE */

#include …

/* TINY SABRETALK PROGRAM */

#include <tpf/c_eb0eb.h>

#include <c_sw00sr.h>

#include <invdb.h>

#include <invces.h>

static void setfound(ULong4_t * const found);

void findcust(struct TPF_regs *regs_)

{ regs_->r1 = (long int)findcust_(

 (char (*)[64])regs_->r1);

}

char (*findcust_(char (*custptr)[64]))[100]

{ struct sw00sr *sw0ptr = NULL;

 INVDB_t *invdbptr = NULL;

 INVREC_t *invptr = NULL;

 ULong4_t found = 0x0;

 char (*bufptr)[100] = NULL;

 ULong4_t invptr = 0x0;

 Short2_t * const sub =

 (Short2_t *)&ecbptr()->ebw096;

 /**************************/

 invdbptr = (INVDB_t *)ecbptr()->invdbuf;

 *(UChar_t *)bufptr &= ~ 0x80;

 memcpy(& ((char *)bufptr)[1], bufptr, 99);

 ecbptr()->ebsw01 = 0x0;

 invptr = invdbptr->invreca[*sub - 1].invb70;

 found = 0;

 if (invptr != 0)

 { sw0ptr = dfopn_acc(“INVCES", INVCES_ID,

 DFOPN_FADDR, DFOPN_HOLD, invptr);

 dft_kyl keys_;

 memset(&keys_, 0, sizeof keys_);

 df_setkey(&keys_, 1,

 offsetof(invdbrec_t, invcesk),

 member_size(invdbrec_t, invcesk),

 DF_EQ, 0, invdbrec, DF_UPORG, DF_CONST);

 dfkey_nbr(sw0ptr, &keys_, 1);

 invptr = (INVREC_t *)dfred(sw0ptr,

 DFRED_BEGIN);

 if (! DF_ER(sw0ptr)

 && sw0ptr->sw00rtn == 0)

 { setfound(&found);

 }

 }

 sw0ptr = dfifb_ref("INVCES");

 dfcls(sw0ptr, DFCLS_RELFC);

 return bufptr;

}

static void setfound(ULong4_t * const found)

{ *found = 1;

}

Example:
SabreTalk
Automatically
translated to C

Case Study: Mainframe Data Processing

Change: Convert HLASM to C

Business Challenge: Legacy HLASM critical to large-scale payroll delivery

• z/OS and OS/MFT simulation modules

• Very small remaining pool of HLASM engineers

• Significant risk to business continuity

Technical Problem: Manual conversion of HLASM is hard

• 250K SLOC z/OS and OS/MFT (simulation) + Macros

• HLASM engineers have other full time duties

Solution: 90 Day Proof of Concept Migration

• Client-chosen modules 95% automatically translated by DMS Toolkit

Benefit: Lower Cost and Risk for Migration
Considering HLASM to COBOL

* 02420000

* MAJOR FORMAT CODE 2: EUROPEAN (DDMMYYYY) 02430000

* 02440000

MFMT2 BAL R9,MFMTSUB GO GET SEPARATOR CHARACTOR 02450000

 LA R2,POUTDATE LOAD OUTPUT AREA ADDRESS 02460000

 MVC 0(2,R2),PDATE+2 MOVE DD 02470000

 LA R2,2(,R2) BUMP OUTPUT ADDRESS 02480000

 LTR R3,R3 IS THERE AN INSERTION CHAR? 02490000

 BZ MFMT2A NO, JUMP OVER 02500000

 STC R3,0(,R2) INSERT CHARACTER 02510000

 LA R2,1(,R2) BUMP OUTPUT ADDRESS 02520000

MFMT2A MVC 0(2,R2),PDATE MOVE MM 02530000

 LA R2,2(,R2) BUMP OUTPUT ADDRESS 02540000

 LTR R3,R3 IS THERE AN INSERTION CHAR? 02550000

 BZ MFMT2B NO, JUMP OVER 02560000

 STC R3,0(,R2) INSERT CHARACTER 02570000

 LA R2,1(,R2) BUMP OUTPUT ADDRESS 02580000

MFMT2B MVC 0(4,R2),PDATE+4 MOVE YYYY 02590000

 LA R2,4(,R2) BUMP OUTPUT ADDRESS 02600000

 B SETSIZE SET OUTPUT FIELD SIZE 02610000

* 02620000

* MAJOR FORMAT CODE 3: F.I.P.S. (YYYYMMDD) 02630000

* 02640000

MFMT3 BAL R9,MFMTSUB GO GET SEPARATOR CHARACTOR 02650000

 LA R2,POUTDATE LOAD OUTPUT AREA ADDRESS 02660000

 MVC 0(4,R2),PDATE+4 MOVE YYYY 02670000

 LA R2,4(,R2) BUMP OUTPUT ADDRESS 02680000

 LTR R3,R3 IS THERE AN INSERTION CHAR? 02690000

 BZ MFMT3A NO, JUMP OVER 02700000

 STC R3,0(,R2) INSERT CHARACTER 02710000

 LA R2,1(,R2) BUMP OUTPUT ADDRESS 02720000

MFMT3A MVC 0(2,R2),PDATE MOVE MM 02730000

 LA R2,2(,R2) BUMP OUTPUT ADDRESS 02740000

 LTR R3,R3 IS THERE AN INSERTION CHAR? 02750000

 BZ MFMT3B NO, JUMP OVER 02760000

 STC R3,0(,R2) INSERT CHARACTER 02770000

 LA R2,1(,R2) BUMP OUTPUT ADDRESS 02780000

MFMT3B MVC 0(2,R2),PDATE+2 MOVE DD 02790000

 LA R2,2(,R2) BUMP OUTPUT ADDRESS 02800000

 B SETSIZE SET OUTPUT FIELD SIZE 02810000

* 02820000

* THIS SUBROUTINE PLACES THE INSERTION CHARACTER (IF ANY) INTO 02830000

* REGISTER 3 BASED UPON MINOR CODE 1 THROUGH 5 (USED BY MAJOR 02840000

* CODE ROUTINES 1 THROUGH 3 ABOVE. 02850000

* 02860000

MFMTSUB XR R3,R3 ASSUME NO SEPARATOR 02870000

 XR R4,R4 CLEAR WORK REGISTER 02880000

 IC R4,PMINOR GET MINOR FORMAT NUMBER 02890000

 N R4,=F'15' CLEAR SIGN 02900000

 BCTR R4,0 DECREMENT BY 1 (ZERO BASED) 02910000

 SLL R4,2 MULTIPLY BY 4 (LENGTH OF BRANCH) 02920000

 LA R4,MFMTSBR(R4) LOAD ADDRESS OF BRANCH 02930000

 BR R4 GO BRANCH DEPENDING ON FORMAT 02940000

* 02950000

* BRANCH TABLE TO SELECT INSERTION CHARACTER 02960000

* 02970000

MFMTSBR B MFMTSC1 NONE 02980000

 B MFMTSC2 SPACE 02990000

 B MFMTSC3 SLASH 03000000

 B MFMTSC4 HYPHEN 03010000

 B MFMTSC5 PERIOD 03020000

C translator features:
• All assembly artifacts

gone (registers, CC)
• Fully structured

(goto-free) code
• Discovery/formation

of subroutines w/
parameters

• JMP table to
switch statement

• Conversion of DSECT
to structs

• Discovery of arrays
• … many more

...

case 2:

 {

 // *

 // * major format code 2: european (ddmmyyyy)

 // *

 // label: mfmt2

 fnMfmtsub(&c, _parms); // go get separator charactor

 (&_parms->Poutdate)[0] = _parms->Pdate[2],

 (&_parms->Poutdate)[1] = _parms->Pdate[3]; // load output area address // move dd

 pc = &_parms->Poutdate + 2; // load output area address // bump output address

 if (c != 0) { // is there an insertion char?

 *pc++ = c; // insert character

 }

 // label: mfmt2a

 *pc++ = _parms->Pdate[0], *pc++ = _parms->Pdate[1]; // move mm

 if (c != 0) { // is there an insertion char?

 *pc++ = c; // insert character

 }

 // label: mfmt2b

 *pc++ = _parms->Pdate[4], *pc++ = _parms->Pdate[5],

 *pc++ = _parms->Pdate[6], *pc++ = _parms->Pdate[7]; // move yyyy

 break;

 }

case 3:

 {

 // *

 // * major format code 3: f.i.p.s. (yyyymmdd)

 // *

 // label: mfmt3

 fnMfmtsub(&c, _parms); // go get separator charactor

 (&_parms->Poutdate)[0] = _parms->Pdate[4],

 (&_parms->Poutdate)[1] = _parms->Pdate[5],

 (&_parms->Poutdate)[2] = _parms->Pdate[6],

 (&_parms->Poutdate)[3] = _parms->Pdate[7]; // load output area address // move yyyy

 pc = &_parms->Poutdate + 4; // load output area address // bump output address

 if (c != 0) { // is there an insertion char?

 *pc++ = c; // insert character

 }

 // label: mfmt3a

 *pc++ = _parms->Pdate[0], *pc++ = _parms->Pdate[1]; // move mm

 if (c != 0) { // is there an insertion char?

 *pc++ = c; // insert character

 }

 // label: mfmt3b

 *pc++ = _parms->Pdate[2], *pc++ = _parms->Pdate[3]; // move dd

 break;

 }

Example:
HLASM
Automatically
translated to C

Case Study: Automated System Refactoring

Change: Modify System to guarantee quality of service for critical aircraft functions

Business Challenge: Add management for real time video data

• Product line used in several military airframes

Technical Problem: 6,000 C++ Modules needed refactoring

• Avionics Mission Software ~ 5M SLOC

• Architected in 1992 as components with monolithic API’s

• Replace APIs for Boeing custom OS everywhere

Solution: 100% Refactoring with DMS

• Re-architect code into more reusable parts

• Restructure APIs into conceptually clean groups

• Move towards CORBA/RT component model

• Change communication to use ORBs

Benefit: Trustworthy solution for critical software at scale

Multiple UAVs finding/targeting tactical targets

Live Fire: F-16+JDAM and HIMARS+ATACMS

Case Study: Chemical Plants

Change: Model/Migrate Software Running Manufacturing Process

Business Challenge: Trusted plant-controller computers starting to fail due to age

• Many different plants / Thousands of control programs

• Software had to be migrate to modern controller hardware

• Limited resources and time

Technical Challenge: Manual conversion impractical for scale

• Can’t be wrong or factory may “blow up”

• Assembly like language difficult to analyze

Solution: Automated Tool to recover abstract process control model from “assembly code”

• Define Dowtran from scratch to DMS

• Define abstractions in terms of data flows with conditional implementations

• DMS matches legacy code via data flows (“Programmer’s Apprentice”) to produce model

• Generate new controller code from model

Benefit: Reliable migration of business/safety critical software + huge cost savings + design capture

Some plants now converted

idbaxter@semanticdesigns.com

So much code…

Questions?

… at Vendor Hospitality later today…

… at TPF conference thru Wednesday …

mailto:idbaxter@semanticdesigns.com
mailto:idbaxter@semanticdesigns.com

